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Abstract. We investigate statistical-mechanical organization of metastable states at 
finite temperatures in the naive mean-field model for spin glasses by direct numerical 
analysis on the equations of states of the model. The number of their solutions 
(metastable states) is shown to agree with the replica prediction developed by Bray 
and Moore. Furthermore, such sophisticated spin-glass properties as the universal 
probability l a w  of the non-self-averaging overlap probability of metastable states, 
which are initially derived for the Sherrington-Kirkpatrick model by means of the 
replica argument, are demonstrated to be common also to the naive mean-field model. 

1. Introduction 

The  mean-field theory of spin glasses based on the Sherrington-Kirkpatrick (SI<) model 
has revealed various novel properties of its ordered (spin-glass) phase [l]. Among them 
are the marginal stability of the spin-glass phase, the rugged free-energy structure with 
many metastable states, the universal probability law of the overlap function of states ~ 

and the ultrametric organization of states. Most of these properties have initially 
been derived by the symmetry-breaking argument in the replica spin space. Later 
some of them, such as the marginal stability and the existence of many metastable 
states, have been checked by the analyses in the original spin phase space [2 ,3] .  For 
such sophisticated properties as the probability law of the overlap function and the 
ultrametricity, however, direct confirmation has yet been limited to the metastable 
states at zero temperature [4 ,5] .  This is due to the difficulty in numerical analyses 
of the equations of states of the SK model, i .e. ,  the Thouless-Anderson-Palmer (TAP) 
equations at finite temperatures [ a ,  61. 

Bray, Sompolinsky and Yu [7] examined another mean-field model for spin glasses, 
named as the naive mean-field (NMF) model. I t  is a simplified version of the SI< 
model in the sense that its equations of state consist of only the R’eiss field term (the 
Onsager reaction field term is absent, in contrast to the TAP equations), though the 
corresponding spin model is rather artificial and complicated. They investigated the 
spin model mainly by the replica method, and found that the model also shares some 
spin-glass properties mentioned above. In a recent work [8], two of the present authors 
investigated the same model by the complementary approach, i.e., by analysing its 
equations of state (and the corresponding free-energy expression). There the marginal 
stability of its spin-glass phase is confirmed numerically, and the number of metastable 
states are evaluated analytically by extending the replica trick first investigated for the 
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TAP equations by Bray and Moore [3]. The results exhibit quite similar dependences on 
the system size as well as on temperature as those of the SK model. From these results 
it is natural to  expect that the other sophisticated spin-glass properties mentioned 
above are also common to the NhIF model. 

The mean-field picture for spin glasses has recently been extended in two directions. 
One is to  investigate whether the picture also holds for realistic spin glasses with short- 
ranged interactions, in particular, three-dimensional Ising spin-glasses. For the latter 
systems, the ergodicity breaking at low temperatures was  first claimed by Sourlas [9], 
and the non-self-averaging nature of the overlap probability near below the transition 
temperature has recently been reported by Caracciolo e t  a1 [lo]. The other direction 
is t o  apply the mean-field picture for spin glasses to problems in various fields, such 
as optimization and neural network models [l]. For an example, in a recent work on 
the analogue neural network model [ll], equations identical to those for NhlF model 
of present interest were examined to determine fixed-point attractors in the model. 
These extensions are certainly of importance and of interest, but we believe that deeper 
understanding of the basic mean-field picture is also worth exploring. 

The purpose of the present paper is to analyse numerically the nature of the 
metastable states of the NMF model, taking the advantage of the fact that its equa- 
tions of state (NMF equations) are much more tractable than the TAP equations. By 
inspecting all solutions of the NMF equations of finite size, the following properties 
are confirmed within the accuracy of our numerical analysis: the number of the so- 
lutions (metastable states) agrees with our previous result [8] evaluated analytically 
by the replica trick, the overlap probability P,(q) (see equation (8) below) and the 
accumulated probabilities x,(q) (EE s: P,(ql)dq!) and Y,(q) (E 1 - Z,(Q)) a t  finite 
temperatures are not self-averaging, and the probability law of Y , ( q )  of the present 
model almost coincides with the universal probability law predicted for the SK model 
by the replica method [12]. Although some numerical analyses on P,(q) at  finite tem- 
peratures have appeared [ lo ,  13,141, the present result on Y,(q) is, to our knowledge, 
the first numerical evidence for its universal probability law. 

The 
replica method to  analyse the number of metastable states is briefly explained in the 
appendix. In section 3 we present our  results and discuss them in section 4 .  

In the next section the model and our  numerical method are presented. 

2. Model and numerical method 

In the present work the NMF model is defined by the following equations of state 
written in terms of the mean site magnetizations {m,} and the corresponding free 
energy F N M F  without specifying any underlying explicit spin model: 

- J,jmimj - hzmi  
(ij) a 
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where p = 1/T, hi is the external magnetic field on site i, and the infinite-ranged 
interactions { J i j }  are Gaussian random variables with mean zero and variance J 2 / ( N -  
l ) ,  N being the total number of spins in the system. 

Our numerical procedures are as follows. First, all metastable states a t  T = 0 
in each sample are prepared by checking stabilities of all spin configurations against 
one spin-flip process [5]. This step is most time consuming and restricts the size 
of systems we can examine. Then, using each metastable state thus found as an 
initial configuration, we look for a stationary solution of the following equations of 
relaxational dynamics at  finite temperatures 

- 7% = mi - tanhp dt (3) 

The temperatures are increased stepwise. The value of 7 is chosen such that the it- 
erative method to solve equation (3) works most effectively. The convergence to a 
stationary solution is judged by the criterion N-' C,(Amp)z < where Am; is 
the change of mp by one iteration step. The two solutions {m;}  and {mp} thus ob- 
tained are regarded as identical if the conditions IQ, - qbl < and 1 - liabl < low3 
are satisfiedt, where qa = qaa,  iab = q a b / ( q a q b ) ' / ' ,  and qab is the overlap parameter 
defined by qab  E N-' xi mpm:. If any branch of a metastable state which appears 
once a t  a finite temperature persists down to T = 0 as a solution for equations ( l ) ,  in- 
cluding the case that  it bifurcates into several branches, the present numerical method 
starting from all the solutions at  T = 0 is also expected to exhaust all the metastable 
states a t  finite temperatures. The results obtained and described in later sections 
support, though they cannot prove, this expectation. 

Typical numbers of samples examined are 2000, 1000, 500, a.nd 200 for N =12, 
16, 20, and 24, respectively. The energy and temperature are scaled by J so that 
the transition temperature Tc = 2 in the thermodynamic limit. The step of the 
temperature increase is set to 0.05. In this work we examine the equations of state 
under the vanishing magnetic field hi = 0 only. 

3. Results 

Let us start  with analyses of the numbers of metastable states, N,, at  finite T. The 
system-size dependences of l ~ g ( N ~ ) ~  are plotted for some T in figure l(a),  where (. . . j J  
indicates the average over samples. The data are fit,ted to the following empirical form 

with n = 1/3. The resulting 4 are presented in figure l ( b ) .  The number of metastable 
states, and so 4 in the thermodynamic limit ( N  + m) can be evaluated by the method 
of Bray and Moore [3] as briefly explained in the appendix. The result is also drawn 
by the solid curve in the figure. The agreement between the two results is surprisingly 

t The second criterion for Gab implies that we pick up, as for a solution of equations ( l ) ,  only one 
of the two solutions which are symmetric with each other against the time reversal transformation. 
Although the overlaps q a b  between the two solutions thus selected are not necessarily non-negative, 
we simply put qab = Iqabl in evaluating the Parisi order parameter p and the overlap probability 
P j ( q )  (equations (56) and (8) later). 
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well in spite of the fact that  (N,) are rather small (for example, as seen in figure 1(u), 
(N,) 21 4.5 at  T = 0.5 even for systems with N = 24). In this context it is noted that 
a t  lowest temperatures, where ( N s ) J  are rather large, the fitting even to a straight 
line (without the last term in equation (4)) gives rise to  the C#J value within the error 
bars in figure l ( b ) .  We regard this agreement as a support that our numerical method 
almost exhausts all the metastable states a t  finite temperatures. 

12  20 28 36 0 0 . 2  0 . 4  0.6 0 8  1 . 0  

S T 

Figure 1. Numbers of metastable states ( N ~ ) J .  ( a )  Their dependence on system 
size, N ,  at  several te:nperatures in intervals of 0.1 (from T = 0.1 (top) to T = 0.7 
(bottom)). The curves are the fits to equation (4)  with n = 1/3. ( b )  Temperature 
dependence of q3 in equation (4) obtained from the fits. The full curve indicates the 
analytical result in the thermodynamic limit [5 ] .  

It is worth noting how metastable states disappear as the temperature is increased. 
Most of the processes are the confluence of a metastable state to  another with a large 
drop of free-energy. We may interpret it as disappearance of a valley which was located 
within a larger valley and had a rather high free energy relative to  the bottom at  the 
preceding temperature. The process is hard to regard as the inverse of bifurcation 
of a metastable state in cooling process. We expect that  ‘bifurcation scenario’ of 
metastable states proposed by Mdzard e l  a1 [12] can be applied to  metastable states 
with lowest free energies and is hardly ascertained by the present numerical analysis 
on small systems. 

Making use of the solutions selected as described in section 2, we have evaluated 
the Edwards-Anderson (EA) order parameter PEA and the Parisi order parameter 
defined respectively by 

J 
(?EA = ( ‘aqa) 

? = ( ab  ‘a‘bqab) J 

where the weight Pa is given by 
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and z E x,exp(-PF&). For each T we have examined the variance of qEA and 
confirmed that it is self-averaging, i.e., the variance decreases in proportion t o  N-a ,  
where a is nearly equal to 1 within the present numerical accuracy. Its averages 
q E A ( N )  are then fitted to  an empirical form q E A ( N )  = qgA -I- C / N .  From the data  
for q ( N ) ,  on the other hand, its asymptotic limit q- is hardly estimated. The results 
of &?A, g(12) and q(24) are shown in figure 2. At lowest temperatures qEA and (r for 
each N exhibit the following asymptotic forms: 

with a N ti. 

0 1 2 

Figure 2. Temperature dependence of the order parameters qEA and g .  The full, 
chain and broken curves represent qgA, 1 for N = 24 and g for N = 12  respectively. 
The full line indicates qSK (= 1 - T). 

Next we examine the overlap probability P,(q) defined by 

and the accumulated probabilities z J ( q )  and Y,(q) .  Typical results of its average 
P(q)  (= ( P , ( q ) ) , )  are shown in figure 3(a ) .  As N increases the peak in P(q)  at  
around q = qEA sharpens, but the tail part below qEA remains finite. The former is 
the sum of the self-overlap of each metastable state, while the latter is attributed to 
the overlaps between different metastable states. In figure 3 ( b )  we plot the inverse of 
the corresponding function z(q) (E ( ; ~ , ( q ) ) ~ ) ,  namely, the order parameter function 
q(z ) .  For comparison, we draw also q ( x )  of the SI< model with q ( 1 )  = QEA N 0.82 (at 
T = 0.25). At lowest temperatures both q(x)’s can be approximated as 

where CY is a constant. Then 2: qEA - CY. For the 
SI< model Parisi’s solution yields exactly QSK = 1 - T .  Therefore aSK should be 
given by aSI< N T - (1 - q z z ) .  q$: is known to behave q$z  N 1 - cT2, c being a 
constant. For the N M F  model, on the other hand, equation (7) with a N 2 implies 

is approximately evaluated as 
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Figure 3. ( a )  The overlap probability P ( q )  at  T = 0.6 for various system sizes: 
N = 24 (0), 20 (O), 16 (A) and 12 (0). The arrow represents the valueof qgA at this 
temperature. ( b )  The corresponding function q(z), i.e., the inverse of accumulated 
probability z(q). The full curve represents q(z) of the SK model with q ( l )  N 0.82 (at 
T = 0.25) evaluated from Parisi’s replica-symmetry-broken solution. 

aNMF N T-2(1  -q2YF). q!yF is given by qfyF N 1 - c ( T / ~ ) ~ / ’ ,  where c 2: 1.0 from 
our numerical analysis in the limit N + CO, while c N 1.4 from the replica analysis 
described in the appendix. These differences in the cu seen in figure 3(b) as well as 
in the q E A  can be attributed to the Onsager term which is present only in the TAP 
equations. 

Lastly we examine the probability law of the accumulated probability YJ(q). For 
the SK model it is predicted by the replica method [12] that  YJ(q)  is not self-averaging 
and tha t  its distribution law is universal in the sense that the moments (Yy(q))J are 
expressed its a function of the first moment y (5 ( Y J ( q ) ) J )  alone: 

and so on. In the phase space representation YJ(q)  is rewritten as 

where O(z) is the step function. For the SK model YJ(qEA) is known t,o reduce 

The right-hand side of the expression is interpreted as the inverse ‘participation ratio’ 
of the weights { P a } .  These ratios M’, obey also the above probability law for the SK 
model. 

Having all the metastable states in hand, we can directly calculate the above mo- 
ments (Yy(q))J  as well as ( W y ) J  of the NMF model a t  finite temperatures. The  results 
for the second and third moments are shown in  figures 4 ( a )  and 4 ( b ) ,  respectively. I t  
is noted that if there is only one metastable state (excluding its time-reversal state) 
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YJ(q) = O(qEA - q )  and so we obtain Yz = Y3 = y.  Such data are in fact obtained 
a t  higher temperatures, but they are excluded from the figures. The data points pre- 
sented in the figures clearly do not lie on the self-averaging curves given by Yz = y’ 
and Y3 = y3. More interestingly, they are almost on the curves given by equations 
(loa) and ( l o b ) ,  namely, the probability law of YJ(q)  (and W,) of the N M F  model 
coincides with that of the SK model. This result is the first numerical evidence for the 
universal probability law of YJ(q),  and at  the same time it expands the concept of the 
universality to  the system whose equations of states are different from the SK model. 

The data  in figure 4 are concentrated to  the range y > 0.5 .  This is in agreement 
with the replica argument [12] that  the most probable value of YJ(q)  is unity, and 
means that among the weights {Pa} only a few of them are dominant. Does this also 
mean that  the rest of the metastable states whose number is huge as shown in figure 1 
are entirely irrelevant to the spin glass properties? In order to  answer this question 
we have examined the organization of metastable states from a different point of view. 
Besides the complete scan of the phase space, we have also carried out the T = 0 
Monte Carlo analysis to  find out the solutions a t  T = 0. By this method the lower 
energy states are reached to the more frequently. This indicates that each lower energy 
state is associated with a relatively large size of basin of attractor if the spin dynamics 
is governed by the T = 0 Monte Carlo process (rapid cooling). To measure size of 
the basins we analyse the probability p ,  3 M a / M ,  where M ,  is the number of trials 
which end up with the ath state and A4 the number of total random trials. In the 
insets of figure 4 the moments of its inverse ‘participation ratio’ YA E, p i  are also 
plotted. The data have small (YA) ,  and are rather close to the self-averaging curves. 
Also ( Y J J  tends to  vanish in the limit N -+ w. 

( b )  
i .  0 

3. 5 

0. 8 

3.7 

o. 5 

c. 5 

0. 4 

0. 3 

- s- 

0. 5 0. 6 0. 7 0. 8 0. 9 i .  0 

Y 

Figure 4. ( a )  The second and ( b )  third moments of Y J ( ~ )  and M’J of systems with 
N = 24. The open (full) symbols are for Y J ( ~ )  ( W J ) .  Each symbol represents the 
da t a  obtained at  the same temperatum; T = 0.2 (0. O ) ,  0 . 4  (0,  W ) ,  0.6  (0, t), 
0.8 ( A ,  A), and 1.0 (V,V). The full and broken curves represent equations (10) and 
the self-averaging curves, respectively. Insets the corresponding moments of \’A of 
systems with N = 12 (top),  16, 20 and 24 (bottom) are shown by the data points. 

4. Discussions 

Combining all the observations described in the preceding sections we may conclude 
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with the following picture for the statistical-mechanical organization of metastable 
states in the NMF model. There are a large number (which is however much smaller 
than N ,  in figure 1) of metastable states having lower energies. They have almost 
equivalent weights if the system is cooled rapidly. Since, however, differences in the 
(free) energies, each of which is of the order of N. are much larger than the tempera- 
ture of interest, only a few lowest (free) energy states dominates in quantities averaged 
by the weights {Pa}. It is then expected that gradual cooling (or simulated anneal- 
ing) selects one of a few lowest free-energy states which are ‘reproducible’, i.e. their 
thermodynamic quantities are independent of the states. It is also these lowest free 
energy states with significant weights {Pa} that give rise to  the universal probability 
law of YJ(q) .  A large number of metastable states with lower energies are considered 
to  play a fundamental role on the hysteretic phenomena which exhibit much more 
variety and subtlety than those in ordinary ferromagnets. 

The spin glass properties obtained here for the NMF model are initially predicted 
for the SK model [l]. The two models are described by different equations of state and 
so have different thermodynamic behaviours such as the spin-glass order parameters 
and qEA discussed below equation (9). We emphasize further the following difference. 
Metastable states in the SK model locate just on the edge of the validity condition of 
the TAP equations [ 6 ] ,  while those in the N M F  model locate far from the region where 
the Hessian matrix of the free energy becomes negative (see figure 1 in [SI). The 
common spin glass properties obtained in the two models in spite of these differences 
are thus considered intrinsic ones at  least to mean-field spin glasses, and might be so 
to  spin glasses with short-ranged interactions [lo]. 

Lastly a comment is in order on the implication of the present results with the 
properties of spin glasses with short-ranged interactions. The present work strongly 
support that  the method of Bray and Moore [3 ,8]  counts appropriately the averaged 
number of metastable states ( N s ) J  in mean-field models for spin glasses. According 
to the method, 4 in ( N s ) J  = exp(N4) is given by 

(13)  6 ($J 2 y€ 

near T,, where E = 1 - (T/T,) ,  and y = 8/81 for the SK model [3] and y = 128/21 
for the NMF model [8]. Then a t  T = 0.8TC N($J of the SK model becomes 0.02 even 
with N = 143 so that we may hardly obtain non-trivial overlap probability P(q)  in 
such a finite system. To the contrary, Caracciolo e t  a1 [lo] have observed non-trivial 
P(q)  at  T = 0.83Tc in 3D Ising spin glasses even with N =’ 63, lo3 and 143. This 
means that  there are relatively more metastable states in 3D Ising spin glasses than 
in mean-field models a t  temperatures close to T,, which contradicts our simpleminded 
expectation. Although we cannot judge their criterion of equilibration in detail from 
their article, one possible interpretation is that metastable states claimed by Caracciolo 
el a1 might not strictly be ‘pure states’ but they are still organized, if observed by an 
appropriate time scale, as those in the mean-field spin glasses. There exists, however, 
no satisfactory theory yet to answer this problem. 
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Appendix 

By the replica trick developed by Bray and Moore [3], the averaged number of 
metastable states ( N s ) J  in the N M F  model is given by (we put 1 = f ,  y = 0 and  
B/2 + B in the  corresponding equations in [8]) 

where t = T/Tc and m = tanh(PJq’/’z). The  saddle-point conditions for the param- 
eters A, q ,  B, U, A are given by equations (2.8) in [8]. 

At temperatures higher than a certain critical temperature t,(Z 0.225) the above 
equations can be solved straightforwardly by numerical iteration. At t ,  B reaches -1 
and the saddle-point stability starts to be broken in a certain range of z .  Therefore, 
in our previous analysis [8], we fixed B at -1 + E ( E  being an infinitesimal positive 
constant) and solved for the other parameters and evaluated 4 below t,. A better 
method for getting out of the saddle-point instability is proposed by Waugh et a1 
[ll], namely in the integration in equation (A.3) the range of t where the saddle 
point is unstable (1 + B(l  - m2)  < 0) is to be discarded. Then the asymptotic 
behaviour of the parameters in the limit t + 0 are given by q N 1 - 2v1/’f3/’, 
X 2: -77’12 21 - U ,  A 2: Vt- ’ ,  B N -V1/’t-’/’, where 7 S 0.506. Then 4 is evaluated 
as 4 N -(tA)’/2 + 1nJ’ E 0.199. As compared with our previous results [8], the 
asymptotic behaviour of B, U and 1 - q are different, but those of A and A ,  and 
therefore 4 are identical. In particular, the 4 of the two analyses coincide with each 
other over the whole range below t ,  within our numerical accuracy. 
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